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Abstract: Climate is a critical factor affecting forest ecosystems and their capacity to 
produce goods and services. This chapter reviews published studies of climate-forest 
relationships with emphasis on indications and mechanisms of change during recent 
decades. Effects of climate change on forests depend on ecosystem-specific factors 
including human activities, natural processes, and several dimensions of climate (tem-
perature, drought, wind, etc.). Indications of recent climate-related changes in ecosystem 
processes are stronger in boreal forests than in other domains. In contrast, constraints 
on adaptive capacity that increase vulnerability to climate change are generally more 
severe in subtropical and tropical forests than in temperate and boreal domains. Avail-
able information is not sufficient to support a quantitative assessment of the ecological, 
social and economic consequences of recent forest responses to human influences 
on climate. The complexity of natural and human systems is a formidable barrier to 
impact quantification and predictability. For example, effects of land use practices and 
invasive species can overshadow and interact with effects of climate change. Never-
theless, substantial progress has been made in defining mechanisms of climate-change 
impacts on forest ecosystems. Knowledge of impact mechanisms enables identification 
and mitigation of some of the conditions that increase vulnerability to climate change 
in the forest sector.
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ANALYSIS OF PAST AND FUTURE IMPACTS 
AND VULNERABILITIES

2.1 Introduction

Many published reports have presented evidence 
that climate changes over the past half century 

have affected many aspects of forest ecosystems, 
including tree growth and dieback, invasive species 
problems, species distributions and migrations, sea-
sonal patterns in ecosystem processes, demographics 
and even extinctions (IPCC 2007a). Effects of recent 
climate change appear to be greater in boreal forests 
than in other domains. In contrast, several factors that 
increase vulnerability to climate change appear to be 
more prevalent in subtropical and tropical domains 
than in boreal and temperate domains (Table 2.1).

Available information is not sufficient to sup-
port a quantitative assessment of the ecological, 
social and economic consequences of recent forest 

responses to human influences on climate (Backlund 
et al. 2008). Barriers to quantifying the impacts of 
anthropogenic climate change include: (a) lack of in-
formation about the nature, extent and causes of for-
est ecosystem change in most countries (FAO 2007); 
(b) uncertainty about the relative contributions of 
climate change and other factors to observed changes 
in forests (Sparks and Tryjanowski 2005); and (c) 
uncertainty about the relative contributions of natural 
and human factors to climate change and extreme 
weather events at the regional and sub-regional level 
at which ecosystem changes are usually measured 
(Solomon et al. 2007).
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2.2 Natural History of Forest 
Response to Climate Change

The extent of world forests has undergone dramatic 
changes in response to past climate changes (Ritchie 
1987). During the last ice age, which ended around 
15 000 to 11 000 years ago (ice lasted longer in 
some areas), the world was much drier. Tropical for-
ests were drier and fragmented. Low carbon dioxide 
(CO

2
) levels increased physiological dryness and 

converted some forests to woodland (Loehle 2007). 
Large portions of regions now occupied by boreal 
forests were either under ice or occupied by tundra or 
cold grassland (Ritchie 1987). As the ice melted and 
the climate became wetter, forest expanded rapidly 
at all latitudes where temperatures were sufficient 
for tree growth.

Although rapid on a geologic timescale, the pace 
of forest advance in response to glacial retreat was 
limited by rates of seed dispersal and tree growth. In 
contrast, worsening conditions for tree growth and 
survival can cause relatively rapid retreat of the forest 
boundary (e.g. Tinner et al. 2008). There is, there-
fore, an expected hysteresis effect at forest ecotones: 
slow expansion of tree species boundaries as climate 
conditions become more favourable, and more rapid 
retreat in response to lethal episodes of climate-medi-
ated stress (e.g. frost, drought) (Noble 1993).

During the current interglacial period, natural cli-
mate changes at various scales have had substantial 
effects on ecosystems. For example, Kröpelin et al. 
(2008) provide an example of a dramatic change 
from dry savanna to Saharan desert in response to 
long-term climate change over the past 6000 years, 
and Kobori and Glantz (1998) discuss the role that 
climate change has played in increasing the aridity 
of the Aral Sea area of central Asia. In both cases, 
long-term ‘creeping’ declines in precipitation have 
resulted in desertification over vast areas. Effects of 
climate change can be exacerbated by human activi-
ties, as in the Aral Sea basin where water use for 
irrigation has contributed to shrinkage of the Sea and 
desertification of the landscape (Kobori and Glantz 
1998).

Where long-term climate changes are less extreme, 
the long lifespan and broad ecological tolerance of 
many trees means that internal forest ecotones (those 
between forest types rather than between forest and 
non-forest) are likely to respond slowly to changing 
climate (e.g. Loehle and LeBlanc 1996, Loehle 2003, 
Morris et al. 2008). For example, Eastern hemlock, a 
tree with poor dispersal, has been documented as still 
spreading north west of North America’s Great Lakes 
in a lagged response to the end of the most recent ice 
age (Parshall 2002). Disequilibrium with climate has 
similarly been observed in forests of central Europe 
(Tinner and Lotter 2001).

Table 2.1 Assessment of recent climate impacts and current vulnerabilities (IPCC 2007a).

Factors Assessment

Exposure to recent climate warming Generally higher in boreal forests

Plausible hypotheses about impact Plausible hypotheses have been described
mechanisms for all forest domains

Empirical evidence of ecosystem change Evidence stronger for boreal and temperate
consistent with impact hypotheses domains than other domains. However, this
 may be due in part to greater investments in
 research in boreal and temperate domains

Deforestation (increases vulnerability Deforestation rates generally higher in
by reducing forest resilience and subtropical and tropical domains
capacity for adaptation)

Endemic forest types may have relatively Endemic forest types are more common in
high vulnerability to climate change because non-glaciated zones, including tropical and
their limited extent may reduce resilience subtropical domains and warmer parts of
 the temperate domain

Adaptive capacity Human dimensions of adaptive capacity in the
 forest sector are generally high in boreal and
 temperate domains; they are more variable in
 subtropical and tropical domains due to constraints
 on access to capital, information and technology
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2.3 Factors Other than Climate 
Affecting Forests and People

2.3.1 Introduction

Parry et al. (2007, p. 31) suggest, ‘In comparison 
with other factors, recent warming has been of lim-
ited consequence in the agriculture and forestry sec-
tors.’ In the forest sector, important factors affecting 
ecosystems and people include land use and land-
use change, invasive species and rapid expansion of 
global trade.

2.3.2 Land Use

Over the past several thousand years, land clearing 
for agriculture and other purposes has been a domi-
nant force affecting the extent and condition of the 
world’s forests. According to Bryant et al. (1997, 
p. 2), ‘Almost half of Earth’s original forest cover 
is gone, much of it destroyed within the past three 
decades.’

FAO (2007) provides estimates of recent trends 
in forest extent and makes the following observation 
about progress in slowing deforestation. ‘The analy-

sis reveals that some countries and some regions are 
making more progress than others. Most countries 
in Europe and North America have succeeded in 
reversing centuries of deforestation and are now 
showing a net increase in forest area. Most devel-
oping countries, especially those in tropical areas, 
continue to experience high rates of deforestation 
and forest degradation. The countries that face the 
most serious challenges in achieving sustainable 
forest management are, by and large, the countries 
with the highest rates of poverty and civil conflict.’ 
(FAO 2007, p. v).

In some forested regions, it is possible to docu-
ment changes in forest type and structure over time 
that are consistent with histories of human use that 
include major disturbances such as forest clearing, 
cultivation and farm abandonment leading to affor-
estation (e.g. Zhang et al. 2000). Urban sprawl is a 
relatively recent phenomenon that has created vast 
exurban areas in which forest ecosystems are altered 
in various ways (Radeloff et al. 2005). While such 
areas may remain forested to some extent, the land 
is often no longer available for traditional uses (e.g. 
wood production, hunting) and has characteristics 
such as high densities of paved roads and domestic 
animals that can be detrimental to many species. It 
can be difficult to find a ‘climate impact signal’ in 
the noise of land use history.

Photo 2.1 Conversion of forests to agriculture has been and continues to be a major cause of forest loss. 
For example, large areas of tropical rainforest in northern Queensland, Australia, have been converted 
to sugar cane (shown here).
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2.3.3 Invasive Species

In forests throughout the world, invasive species are 
exerting dramatic effects on all facets of ecosystem 
structure and function (Wilcove et al. 1998, Levine et 
al. 2003, Moore 2005, Asner et al. 2008). For example, 
invasive diseases and pests such as Chestnut blight 
(Cryophonectria parasitica) and Dutch elm disease 
(Ophiostoma ulmi) have caused major changes in the 
composition of forests in eastern North America over 
the past century (Tomback et al. 1995, Williams and 
Liebhold 1995, McNeely et al. 2001, Anderson et 
al. 2004, Logan et al. 2007, Anulewicz et al. 2008, 
Wingfield et al. 2008). Noteworthy invasive species 
affecting forests outside North America include the 
pine wood nematode (Bursaphelenchus xylophilis) 
in Asia and now Europe (Dwinell 1997, Naves et al. 
2007) and sirex woodwasps (Sirex noctilio F.) in the 
southern hemisphere (Hurley et al. 2007).

The mechanisms for forest change in response 
to biological invasion vary with the system and the 
invasive species, but generally relate to competition 
with endemic species, lack of natural enemies, use 
of vacant niches, loss of fundamental processes such 
as mutualism, hybridization with genetically simi-
lar species, alteration of the physical and chemical 
characteristics of soils, modification of habitats, and 
vectors for pests and diseases (Christian 2001, Mc-
Neely et al. 2001). At the species level, direct effects 
of alien invasive species occur through processes 
such as predation, competition, and transmission 
of pathogens and parasites to individual organisms, 
eventually leading to population declines and species 
extinctions (CBD 2003, Loehle 2003, Chornesky et 
al. 2005).

The impacts of alien invasive plant species at the 
ecosystem level include changes to trophic struc-
tures, changes in the availability of resources such 
as water and nutrients, and changes in disturbance 
regimes (McNeely et al. 2001, CBD 2003). Systems 
that are rich in species are often, but not always, high 
in exotic species as well, possibly owing to high 
productivity of the system (Levine et al. 2002). In 
temperate forests in New Zealand, however, Ohl-
emuller et al. (2006) found no relationship between 
alien species richness and endemic species richness, 
suggesting that at least in those systems, climate and 
land use were the most important factors in invasive 
species success.

There are many incidences of invasive species 
in disturbed tropical and sub tropical systems (e.g. 
Richardson 1998, Moore 2005). There is evidence 
that natural tropical non-montane forests are less 
prone to invasion by alien species than disturbed 
forests, possibly owing to lack of available niches 
(Connell and Slatyer 1977).

Closed forests in general may be more resistant 

to invasion than forests with many canopy gaps cre-
ated by disturbances (Richardson et al. 1994, Webb 
et al. 2000). Loehle (2003) modelled tree invasion 
and suggested that the more disturbance there is, the 
higher the probability that alien trees could invade a 
forest system. However, some invasions of alien spe-
cies into closed forests have occurred; notably Chi-
nese tallow (Sapium sebiferum) in the south-eastern 
USA (USDA 2000, Conway et al. 2002).

Variation in presence and abundance of invasive 
species in forests is not fully explained by measures 
of disturbance and native species diversity. This sug-
gests that invasion depends not only on forest char-
acteristics but also on the ecology of the invading 
species, including habitat preferences, food require-
ments, climate tolerance and presence of enemies 
(Mack et al. 2000, Ward and Masters 2007).

The spread of invasive species is facilitated by 
expansion of global trade, road networks and human 
presence in forests (Coffin 2007, Ding et al. 2008). 
Introduction of non-native trees for plantations (FAO 
2007) has been an important source of invasive spe-
cies in some countries (Richardson 1998, van Wilgen 
et al. 2001, de Wit et al. 2001, CBD 2003, Richardson 
and Rejmánek 2004, Moore 2005).

Alien invasive species are causing major impacts 
on biodiversity (Wilcove et al. 1998, Sala et al. 2000), 
ecosystem processes (Levine et al. 2003) and the pro-
duction of ecosystem goods and services (FAO 2001, 
Moore 2005). Through direct impacts on species or 
indirectly through alterations of habitats, invasive 
species are responsible for placing many species at 
risk of extinction (Baillie et al. 2004). Loss of species 
as a result of alien invasive species ranks behind only 
habitat loss among threats to biodiversity (McNeely 
et al. 2001, Perrings et al. 2002, Richardson and 
Rejmánek 2004).

2.3.4 Global Trade in Wood Products

Production of industrial wood has risen around 
1.1% per year globally since 1961, although the an-
nual rate of growth has clearly not been constant 
(Figure 2.1). Output has grown the most in Latin 
America, southern Africa and Oceania. Growth in 
these regions is largely attributed to investments in 
new timber plantations and associated manufacturing 
facilities. Many of these plantations have been estab-
lished with non-indigenous species, which have been 
found to achieve substantially higher growth rates 
compared to local indigenous species. Daigneault 
et al. (2008) estimated that non-indigenous forest 
plantations contribute around 13% of current global 
timber supply.

Rapid expansion of global trade in forest products 
has enhanced the economic efficiency of plantation 
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establishment. Between 1970 and 2001, the value 
of trade in forest products increased 7.5% per year 
(Laaksonen-Craig 2004). With increasing trade, 
some countries were better able to take advantage 
of local growing conditions and specialize in the pro-
duction of fast-growing species. As a result, foreign 
direct investment in timber plantations and milling 
capacity has increased dramatically. In 1980, for-
eign direct investment in the forestry sectors of the 
USA, Canada, Brazil and Chile amounted to only 
about USD 2.5 billion, but by 2001, it was closer to 
USD 30 billion (Laaksonen-Craig 2004), implying 
an increase of nearly 12% per year.

Global trends towards freer capital markets, and 
continuing efforts to make trade freer (GATT, WTO, 
European Union, NAFTA, etc.) have contributed to 
the internationalization of the forest products indus-
try over the past 30 years. These trends have both 
beneficial and adverse effects on forest ecosystem 
resilience and the adaptive capacity of forest man-
agers.

2.4 Conceptual Model of 
Forest Ecosystem Response 
and Vulnerability to Recent 
Climate Change

Understanding recent changes in climate and forest 
ecosystems is a complicated task. Many drivers and 
dimensions of environmental change have been op-
erating simultaneously, including atmospheric CO

2
 

concentrations, nitrogen deposition rates (Högberg 

2007), and tropospheric ozone concentrations (Kar-
nosky et al. 2005) as well as land use practices, in-
vasive species and global trade. These factors have 
caused considerable and measurable environmental 
change during the industrial period (Caspersen et 
al. 2000, Albani et al. 2006, Hyvönen et al. 2006). 
Further complicating the matter are the facts that: 
(1) these interacting, co-occurring factors can have 
positive, negative or synergistic consequences for 
forest ecosystems; and (2) these key environmental 
drivers may also interact with a number of natu-
ral disturbance agents that shape forest ecosystems 
such as insect or disease outbreaks, or with extreme 
weather events and fire (Kurz et al. 2008b).

Complexity notwithstanding, substantial progress 
has been made in defining mechanisms of climate 
change impacts on forest ecosystems (Fischlin et al. 
2007). In general, impacts depend on ecosystem-
specific factors and their interactions. Conceptually, 
changes in one or more dimensions of climate (e.g. 
temperature and precipitation regimes) affect eco-
system processes (e.g. photosynthesis, disturbance, 
etc.). Alteration of ecosystem processes can lead to 
impacts on biodiversity and ecosystem services.

Vulnerability to climate change impacts in the 
forest sector depends not only on exposure to climate 
change and other ecosystem-specific factors but also 
on adaptive capacity. Easterling et al. (2007, p. 279) 
wrote that, ‘Adaptive capacity with respect to current 
climate is dynamic, and influenced by changes in 
wealth, human capital, information and technology, 
material resources and infrastructure, and institutions 
and entitlements.’

There is substantial variation within forest do-
mains in most factors that influence climate impacts 

Figure 2.1 Historical wood harvest patterns by region (FAOSTAT 2008).
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and vulnerabilities (IPCC 2007a). In the boreal do-
main, for example, recent climate warming is spa-
tially variable, and human adaptive capacity, while 
generally high, is presumably low in remote, unde-
veloped areas. Forests in coastal, montane and arid 
regions appear to have relatively high vulnerability 
in all domains. The vulnerability of coastal forests is 
related not only to sea level rise but also to exposure 
to strong storms and effects of human population 
pressures. Montane forest types occupy relatively 
small, disjunct areas, are subject to disturbance by 
human influences associated with recreation and 
tourism, and may have limited potential to migrate 
in response to climate change. Forests in arid zones 
occupy niches that are almost too dry to support for-
ests and may be vulnerable to changes in the severity 
or frequency of droughts.

2.5 Ecosystem Resistance and 
Resilience to Climate Change

Biological systems maintain a certain level of resis-
tance to environmental change. This resistance is 
conferred at several levels, including through genetic 
diversity, species redundancy, species and ecosys-
tem adaptability, and landscape distribution. For ex-
ample, Amazon forests appear to be more resistant 
to recent drying events than climate models would 
predict (Saleska et al. 2007, Malhi et al. 2008), pos-
sibly as a result of the negative effects of drying being 
offset by greater production owing to higher levels 
of CO

2
 (Malhi et al. 2008). Similarly, Newberry et 

al. (1999) suggested that the beneficial effects of 
understory plants on soil moisture regimes contribute 
to ecosystem resistance to drought in tropical forests 
of Malaysia.

However, climate changes may be of sufficient 
magnitude to overcome resistance and force forest 
systems into new states or even biomes (e.g. forest 
to grassland). Such impacts are likely to be exacer-
bated and less predictable across large landscapes 
that lack connectivity owing to habitat loss, forest 

Photo 2.2 Forest ecosystem resilience is the basis for SFM, which requires an understanding of the roles 
of natural disturbances and long-term processes within systems. The dynamic stability over time and 
space allows the use of ecosystems within limits without impairment of goods and services.
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fragmentation and the inability of species to migrate. 
This is especially the case in tropical, subtropical 
and temperate forest regions where human devel-
opment is most common. Therefore climate change 
and land-use change are closely linked, as are the 
consequences for biological diversity and reassembly 
of biological communities under climate change (e.g. 
Hansen et al. 2001, Noss 2001, IPCC 2002, Brncic 
et al. 2007).

If perturbed, forest ecosystems often recover 
most, if not all, of their original properties unless en-
vironmental conditions have been changed markedly. 
Evidence for this resilience is abundant, with forest 
recovery following harvesting, fire or blowdown to 
the same or similar states. Indeed, such resilience is 
the basis for sustainable forest management, which 
requires an understanding of the roles of natural dis-
turbances and long-term processes within systems. 
This dynamic stability in time and space, even if spe-
cies assemblages change, is an important component 
of forested systems, and for human societies, because 
it allows use of the systems within limits without 
impairment of goods and services. However, as noted 
above, too great a change will disable the capacity 
for resilience and move the forest to another state, 
either a different forest ecosystem, or another state 
entirely such as grassland or even desert.

Biodiversity is important for long-term ecosys-
tem persistence (Drever et al. 2006) and resilient 
ecosystems are characterized by functional diversity 
at multiple scales (Peterson et al. 1998). Changes 
in biodiversity can occur slowly or very rapidly in 
response to different environmental perturbations. In 
managed forests, insufficient attention to biodiversity 
can result in loss in resilience (Levin 2000, Drever et 
al. 2006) and thus increase vulnerability to climate 
change impacts.

A predicted component of climate change is 
unpredictability and an increase in severe events; 
hence the additional stress on systems may result 
in unexpected change. The capacity of a system to 
adapt to change may depend on the past history of 
environmental conditions, and complex systems and 
forests may often cycle among several stable states 
(Gunderson and Holling 2002).

Fjeldsa and Lovett (1997) suggested that biologi-
cal communities adapted to stability are most at risk 
to increasing environmental change, and noted that 
many areas of the tropics may thus be threatened by 
climate change. This hypothesis has implications for 
long-term planning for adaptation to climate change, 
such as location of protected areas, and more gener-
ally the use of goods and services under a changing 
climate regime in the tropics.

Tropical stability can be contrasted with boreal 
forest short-term instability owing to frequent per-
turbations by fires, wind and insects. Within bounds, 
these forests have been, at larger scales of time and 

space, highly resilient to change. Nevertheless, many 
authors have cautioned about the cumulative effects 
of multiple stressors and the possibility of major 
change in managed boreal systems compounded by 
climate effects (Gunderson and Holling 2002, Drever 
et al. 2006, Chapin et al. 2007).

2.6 Effects of Climate on 
Forest Productivity and 
Phenology

Many studies of forest ecosystems have correlated 
recent climate trends with changes in phenology (the 
timing of seasonal activities of animals and plants) 
and forest productivity (Rosenzweig et al. 2007). 
It appears that climate warming has lengthened the 
growing season and increased tree growth rates in 
many boreal and temperate forests. However, results 
of several studies suggest that warming has contrib-
uted to reductions in productivity in some forests 
through interactions with drought, fire and biotic 
disturbance (see sub-chapter 2.8).

Relationships between climate changes and for-
est productivity are often complicated by simultane-
ous changes in other factors that affect productivity, 
including nitrogen deposition and atmospheric CO

2
 

concentration (Boisvenue and Running 2006). For 
example, a simulation study by Beerling and Mayle 
(2006) attributed recent observed biomass increases 
on Amazon rainforest plots to anthropogenic in-
crease in CO

2
.

Changes in phenology can affect ecological re-
lationships, e.g. by creating a mismatch between 
plant flowering time and presence of insect pollina-
tors (Humphries at el. 2002, Post and Forschham-
mer 2007, Rosenzweig et al. 2007). Interpreting the 
ecological consequences of phenology changes can 
be challenging, as illustrated by a study that docu-
mented variation in flowering responses to warm-
ing among related cherry species and their hybrids 
(Cerasus sp. or Prunus sp) growing at Mt Takao in 
Tokyo, Japan (Miller-Rushing et al. 2007).

2.7 Effects of Climate on 
Biodiversity

2.7.1 Displacement of Species and 
Communities

Distributional changes of species toward higher lat-
itudes and elevations have been well documented 
and correlated with climate warming (Rosenzweig 
et al. 2007). In meta-analyses, Parmesan and Yohe 
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(2003) and Root et al. (2003) found that over 80% 
of species from many studies behaved as predicted 
(increased, declined or moved) with climate change, 
across multiple systems and regions.

There is no reason to expect that climate change 
would displace entire ecosystems to new locations 
with favourable climates (Hansen et al. 2001), except 
possibly for the northern taiga (Chapin et al. 2004). 
Formation of new species assemblages is more like-
ly (e.g. Davis and Shaw 2001, Hannah et al. 2002, 
Davis et al. 2005), especially where thresholds are 
surpassed (Chapin et al. 2004). Any reorganization 
of species involving the addition of key competitors, 
the loss of key predators or of key functional spe-
cies can have large consequences for plant commu-
nity assembly, and hence for the goods and services 
that the system is capable of delivering in the future 
(e.g. Schmitz et al. 2003). Interactions of climate 
change and higher CO

2
 levels may alter species as-

semblages and ecosystem processes with complex 
and non-linear effects on forest composition (IPCC 
2002, Chapin et al. 2004, Fischlin et al. 2007).

If we ask whether forests have responded to re-
cent climate warming, it is logical to look for evi-
dence of forest expansion where low temperatures 
may be limiting factors, i.e. at mountain tree lines 
(e.g. Holzinger et al. 2008) and at the boreal tree 
line (e.g. Masek 2001). Movement of mountain tree 
lines can be influenced by changes in firewood cut-
ting and grazing practices (e.g. Gehrig-Fasel et al. 
2007), thus complicating interpretations of climate 
warming effects. Filliol and Royer (2003) suggested 
that the taiga has been advancing into the tundra 
zone at a rate of 12 km/year for the past decade, but 
some other studies have reported much smaller rates 
of tree-line advance (Suarez et al. 1999, Gamache 
and Payette 2004, Payette 2007). The presence of 
krummholz (Gamache and Payette 2004) can seem 
to amplify the rate of forest spread in response to 
climate warming. Trees do not actually disappear at a 
sharp demarcation at tree line, but gradually become 
reduced in stature and more scattered. At a certain 
point, trees (spruce particularly) adopt a krummholz 
form. These trees are shrubby and only reach a height 
where they are protected from winter desiccation by 
snow cover. When the climate warms, these trees can 
suddenly adopt an upright growth form and small 
scattered trees can grow larger, giving the appearance 
of a rapid ecotone movement.

Non-linear relationships between climate change 
and ecosystem processes can produce unexpected 
effects on forest species composition that ultimately 
have implications for forest goods and services (e.g. 
Chapin et al. 1997). Such changes appear to be al-
ready underway in boreal forests in North America 
and Europe. For example in eastern North America, 
white-tailed deer (Odocoileus virginianus) are dis-
tributed about 150–200 km north of where they were 

found in 1970 (Thompson 2000), and moose (Alces 
alces) have moved into coastal temperate forests in 
western North America (Darimot et al. 2005) owing 
to milder winters with less deep snow. Both ungulate 
species are capable of altering forest species compo-
sition and growth rates of trees, depending on their 
densities (Thompson and Curran 1993, Niemela et 
al. 2001, Tripler et al. 2005). Similarly, progression 
of mountain pine beetles into boreal forests with a 
warmer climate, from their montane forest habitat, 
is expected to alter the relative densities of pines and 
spruces (Logan and Powell in press). These effects 
may be unexpected and yet have large consequences 
for forest ecosystem structure over time.

2.7.2 Risk of Extinctions with Climate 
Change

Biodiversity on Earth has changed during many time 
periods owing to altered environmental conditions 
(e.g. Webb 1992). For example, large numbers of 
species went extinct during the global warming event 
at the end of the Pleistocene period. Many of these 
extinctions were directly attributable to the change in 
climate (Barnosky et al. 2004, Gutherie 2006). Even 
in tropical zones, there were changes in communities 
as a result of extinctions in montane areas (Rull and 
Vegas-Vilarrubia 2006).

Risk of extinction is generally related to a spe-
cies’ extent of distribution, habitat specificity, capaci-
ties to adapt to change and disperse, metapopulation 
dynamics, reproductive capacity, population size and 
multiple human-related factors (Thompson and An-
gelstam 1999). Climate changes can increase extinc-
tion risk by interacting with other risk factors.

Species with small distributions and high poten-
tial for range displacement are at a very high risk of 
extinction as a result of climate change (Midgely et 
al. 2002, Schwartz et al. 2006). Narrowly distributed 
species that are highly limited by climatic condi-
tions and elevation have high potential for range 
displacement. Extinction risk for such species is 
greatest if predicted future ranges are disjunct from 
current ranges or absent altogether, such as in the 
case of Australian tropical forests (e.g. Williams et 
al. 2003). Narrowly endemic species that are limited 
by non-climatic factors (e.g. soil conditions) may 
also be at risk of extinction under climate change. 
For example, interactive effects of habitat loss and 
drought frequency could increase extinction risk for 
such species. It should be noted, however, that esti-
mates of species losses from climate change depend 
on a number of assumptions, and that resilience of 
species may be greater than assumed (Botkin et al. 
2007).



2 FOREST RESPONSES AND VULNERABILITIES TO RECENT CLIMATE CHANGE

37

ADAPTATION OF FORESTS AND PEOPLE TO CLIMATE CHANGE

2 FOREST RESPONSES AND VULNERABILITIES TO RECENT CLIMATE CHANGE

Malcolm et al. (2006) suggested that hotspots 
were at high risk for large extinction events ow-
ing to climate change, with up to 43% of species 
in some cases predicted to be lost, representing 56 
000 endemic plants and 3 700 endemic vertebrates. 
They noted that estimates of habitat loss might be 
reduced depending on migratory capacity, although 
most species would not find surrogate habitats. In 
terms of broad range change, other studies suggested 
that higher latitudes of temperate and boreal forests 
will be most affected (Thuiller et al. 2005, Virk-
kala et al. 2008) with consequent effects of habitat 
loss of 60% or more for many species. Thomas et 
al. (2004) estimated that extinctions from climate 
change in forested systems will range from less than 
1% in northern areas to over 24% in some temperate 
forest zones.

Amphibians generally seem to be at high risk 
and provide examples of extinctions that have been 
linked to climate change. For example, Pounds et 
al. (1999, 2006) concluded that climate change and 
a fungal pathogen were important causes of recent 
extinctions of the golden toad (Bufo periglenes) and 
harlequin frog (Atelopus varius) in Costa Rican cloud 
forests. Pounds et al. (1999) suggested that climate 
change contributed to extinction of these species 
by reducing the number of days when clouds are 
in the forest. Other authors, however, suggest that 
the links between amphibian extinction and climate 
change are too tenuous to state conclusively (Lips 
et al. 2008).

Rare montane habitats without possibility of re-
placement at higher altitudes have seen extinctions 
in the past and are predicted to be at high risk in 
future (Rull and Vegas-Vilarrubia 2006). Finally, if 
the tropical areas are a cradle for evolution, owing in 
part to their past stability, and climate change causes 
species losses in these areas, especially in hotspots, 
then climate change has negative implications for 
future biodiversity at all latitudes (Jablonski et al. 
2006).

There is a high degree of uncertainty surround-
ing consequences for forest goods and services from 
loss of species in forest systems. It is often not clear 
how species will move into vacated niches and reas-
semble into communities over time (e.g. Chapin et 
al. 2004), especially if alien species are advantaged. 
Further uncertainty stems from redundancy of func-
tional roles among species, an unclear relationship 
between productivity and diversity, and also from the 
possibility of altered impacts of herbivores on plant 
species composition that can have unexpected effects 
on various goods and services, such as productivity 
(Chapin et al. 1997, Schmitz et al. 2003).

2.8 Effects of Climate on Dis-
turbance in Forest Ecosystems

2.8.1 Introduction

All forests are shaped by disturbance regimes driven 
by climate variability in temperature, wind and mois-
ture, which in turn affects fire, herbivory and other 
ecosystem processes. Forest structures, landscapes 
and functions at any point in time are dynamic dis-
equilibria between maturation processes (e.g. tree 
growth) and disturbances at various spatial and tem-
poral scales (e.g. Suffling 1995, Drever et al. 2006). 
Disturbances affect the size and age structure of trees 
and stands, species composition, ecosystem function 
and the socioeconomic value of forests. Fire, insects, 
pathogenes and invasive species are discussed below. 
In addition short term events such as storms and 
floods as well as large-scale circulation changes such 
as El Nino Southern Oscillation have effects on forest 
production (IPCC 2007a).

2.8.2 Fire

Climate-change influences on wildfire extent, se-
verity and frequency depend on interactions among 
several factors including forest management history, 
drought frequency and severity, insect outbreaks and 
many others. There is evidence of both increase and 
decrease in fire activity at regional scales (Easterling 
et al. 2007). Forest thinning, controlled burning and 
other measures to reduce fuel loads and other aspects 
of wildfire hazard can be effective in reducing for-
est vulnerability to fire-mediated effects of climate 
change.

Effects of natural climate variation must be 
considered when interpreting observed changes in 
forest-fire regimes (Millar and Brubaker 2006). For 
example, a climate cycle known as the Pacific Dec-
adal Oscillation can bring several decades of above or 
below average precipitation in south-western North 
America. During wetter periods, forest cover can 
expand and thicken, increasing fuel loads. Drought 
can then kill trees directly but can also create fires 
that clear large areas of trees.

Past human uses of fire should also be considered 
(Kay 2007). For example, intentional and accidental 
fires caused by humans have pushed back forest in 
forest-grassland ecotone regions and created park-
land or savanna in others (e.g. McEwan and McCa-
rthy 2008, Scheller et al. 2008). Conversely, human 
activities that exclude or suppress fire can allow 
encroachment of fire-intolerant species into previ-
ously fire-adapted ecosystems with adverse effects 
on biodiversity and risk of stand-replacing wildfires 
(Covington and Moore 1992).
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2.8.3 Insects and Pathogens

Insects and pathogens (inclusive of native and exotic 
species) have major roles in forest disturbance re-
gimes (Ayres and Lombardero 2000, Pimentel et al. 
2000, Dale et al. 2001, Environment Canada 2004). 
Disturbance may take the form of tree mortality over 
large areas or scattered mortality that creates many 
small gaps in a forest.

Forest resistance to disturbance by insects and 
pathogens depends on many factors including tree 
species, stand ages and vigour, and climate. In some 
cases, investments in planted forests are impaired 
by damage from pests that are not significant prob-
lems in natural forests (Mack et al. 2000, Cock 2003, 
Wainhouse 2005). Reductions in tree diversity and 
high local densities of host trees seem generally to 
promote outbreaks of plant pests and pathogens 
(Jactel et al. 2005, Moreau et al. 2006). However, 
opportunities for early detection and effective man-
agement of pestilence are often greater in plantations. 
Where plantations are established using non-indig-
enous tree species, losses to pestilence can be low 
if the trees’ native pests and pathogens are absent. 
This advantage can be reversed when invasions by 
native enemies occurs, and then the pestilence can 
be severe because pests and pathogens frequently 
have no enemies of their own in the new environment 
(Elton 2000, Lombardero et al. 2008).

Changes in climate can influence forest pesti-
lence via relatively direct physiological effects on 
herbivores and pathogens, via effects on tree de-
fences against herbivores and pathogens, and/or 
via effects on predators, competitors and mutualists 
of herbivores and pathogens. Forest pestilence can 
also produce feedback to the atmosphere by influenc-
ing fluxes of CO

2
 (Kurz et al. 2008a) and probably 

water.
An emerging generalization is that inducible de-

fences of plants tend to be positively correlated with 
environmental conditions that favour plant growth 
(e.g. increased precipitation leads to increased plant 
growth and increased efficacy of inducible plant de-
fences), while constitutive defences tend to become 
less when water and/or nutrient availability increases 
(Lombardero et al. 2000a, Hale et al. 2005). This 
dichotomy may explain the frequent but variable 
effects of plant ‘stress’ on herbivore populations 
(Koricheva et al. 1998).

Interactions between forest pestilence and fire 
can be a primary determinant of ecosystem structure 
and function (Baker and Veblen 1990, van Mantgem 
et al. 2004, Parker et al. 2006). In some cases, the in-
teractions produce a destabilizing positive feedback 
system. For example, fires can promote outbreaks of 
pests and pathogens (Thomas and Agee 1986, Mc-
Cullough et al. 1998), and pests and pathogens can 

increase the probability of fires (Wood 1982, Raffa 
and Berryman 1987). In other situations, fires can 
reduce pest outbreaks (Hadley and Veblen 1993, Kip-
fmueller and Baker 1998, Holzmueller et al. 2008), 
and fire suppression can promote the development of 
large expanses of even-aged forests that have a high 
risk of epidemics from pests and pathogens (Meen-
temeyer et al. 2008, Raffa et al. 2008).

Several lines of evidence and argument support 
the hypothesis that recent changes in climate and 
other environmental factors have affected forest vul-
nerability to pestilence:
◆ The physiology of insects and fungi is highly 

sensitive to temperature, with metabolic rate, and 
therefore resource consumption, tending to about 
double with an increase of 10 °C (Gillooly et al. 
2001, Clark and Fraser 2004). There is evidence 
that warmer is generally better for insects, even 
in climates that are already warm (Currano et al. 
2008, Frazier et al. 2006). However, pestilence 
may tend to decrease in the warmer edges of 
contemporary distributions, as predicted by the 
model of climatic envelopes (Williams and Lieb-
hold 1995). This model may help explain why 
the southern pine beetle has recently become less 
common in the pine forests of Texas and Louisi-
ana even though it has been of great importance 
historically (Clarke et al. 2000, Friedenberg et al. 
2008).

◆ The timing of life history stages (phenology) of 
many insect species has already been demonstra-
bly advanced by warming temperatures (Har-
rington et al. 2001, van Asch and Visser 2007), 
and there are examples of insect distributions 
extending northward (Parmesan 2006). There 
are also reports of growing damage from some 
forest pests at the poleward and/or alpine limits 
of their historical occurrences (e.g. Jepsen et al. 
2008, Lima et al. 2008).

◆ Climatic warming may generally reduce the risk 
to herbivore and pathogen populations of winter 
mortality (Bale et al. 2002, Battisti et al. 2005, 
Régnière and Bentz 2007, Tran et al. 2007). How-
ever, some insects that overwinter in forest litter 
may face higher mortality rates due to decreased 
snow depth (Lombardero et al. 2000b).

◆ Climate change may affect the frequency and in-
tensity of extreme climatic events (IPCC 2007a). 
These events, such as ice storms and wind dam-
age, may result in widespread disturbance in for-
est ecosystems, providing increased opportunities 
for invasive species to attack vulnerable trees and 
become established in disturbed areas (McNeely 
et al. 2001). Mechanical damage of plant tissue 
from storms can enable infection by pathogens 
(Shigo 1964).

◆ Increases in precipitation favour many forest 
pathogens by enhancing sporulation, dispersal and 
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host infection (Garrett et al. 2006). Drought stress 
can increase or decrease tree defences against her-
bivores and pathogens (Mattson and Haack 1987, 
Lombardero et al. 2000a, Hale et al. 2005).

◆ Climate can affect concentrations of secondary 
metabolites and nutrients in plant tissues, with 
consequences for herbivores (Herms and Mattson 
1992, Landsberg and Smith 1992, Bidart-Bouzat 
and Imeh-Nathaniel 2008). Moreover, climate 
can affect natural enemies of insect pests (Bur-
nett 1949) and ecologically important symbionts 
(Lombardero et al. 2003, Six and Bentz 2007).

◆ Anthropogenic increases in nitrogen deposi-
tion and atmospheric concentrations of CO

2
 and 

ozone can impact forest disturbance by insects and 
pathogens (Meadows and Hodges 1996, Karnosky 
et al. 2005, Burdon et al. 2006, Zvereva and Ko-
zlov 2006). The suitability of plant tissue for her-
bivores tends to be decreased by increases in CO

2
 

(Stiling and Cornelissen 2007) and increased by 
nitrogen deposition (Throop and Lerdau 2004).

◆ Forest fragmentation can affect resistance to 
biological disturbance, but the effect can be to 
increase or decrease pestilence depending on the 
system (Roland 1993, Holdenreider et al. 2004, 
Ylioja et al. 2005).

Warm climate conditions have clearly contributed 
to some recent insect epidemics: e.g. bark beetles in 
North America (Berg et al. 2006, Tran et al. 2007, 
Raffa et al. 2008), defoliators in Scandinavia (Jepsen 
et al. 2008), aphids in the United Kingdom (Lima et 
al. 2008) and the processionary moth in continental 
Europe (Battisti et al. 2005, 2006). Some model-
ling studies suggest that many boreal forests are 
vulnerable to increases in tree mortality leading to 
an increased frequency of stand-replacing fires, ex-
acerbated by a warming climate (e.g. Johnston et al. 
2001, Kurz et al. 2008b). In temperate and tropical 
ecosystems, where gap dynamics are more important 
than in the boreal zone, the effects of warming on 
gap disturbances from invasive species are uncertain 
except that there will likely be shifts in forest species 
composition (Hunt et al. 2006, Brown et al. 2008).

Recent impacts of the native mountain pine beetle 
(MPB) (Dendroctonus ponderosae) in western North 
America are noteworthy for their scale, economic 
significance and apparent links to climate. The MPB 
had produced extensive mortality throughout 13.5 
million hectares of lodgepole pine (Pinus contorta) 
by 2008, including in areas further north, east and at 
higher elevations than previously recorded (Aukema 
et al. 2006, Logan and Powell in press). This epidem-
ic was facilitated by recent climatic patterns (mild 
winters and warm dry summers; Logan and Powell 
2001, Carroll et al. 2004, Régnière and Bentz 2007) 
in combination with fire suppression during the last 
century that created extensive tracts of mature sus-

ceptible pine stands (Raffa et al. 2008).
It appears that warm climate conditions have 

transformed MPB into an invasive native insect based 
on: (1) intensified outbreaks within historical range; 
(2) range expansion to the north; (3) range expansion 
into endangered high elevation forests of whitebark 
pine (P. albicaulis); and (4) expansion into forests of 
jack pine (P. banksiana), which creates the potential 
for massive range expansions into north central and 
eastern North America (Logan et al. 2003, Logan and 
Powell in press). Moreover, the MPB epidemic has 
been progressing as predicted by Logan and Pow-
ell (2001) based upon models of climatic effects on 
beetle physiology. These models project an eventual 
northern range expansion of 7° latitude (780 km) 
under a warming scenario of 2.5°C.

2.8.4 Invasive Plants

Climate change can affect forests by altering environ-
mental conditions and increasing niche availability 
for invaders (McNeely 1999, McNeely et al. 2001, 
Hunt et al. 2006, Ward and Masters 2007, Dukes et 
al. in press, Logan and Powell in press). Ecosystem 
susceptibility to invasion by alien plant species has 
been linked to species richness, ecosystem distur-
bance and to the functionality of species (Mack et 
al. 2000). Disturbance and loss of native species can 
open niches and reduce competition to invading spe-
cies (Kennedy et al. 2002).

Rouget et al. (2002) noted that the current dis-
tribution of stands of invasive trees in South Africa 
was largely influenced by climatic factors. Climate 
change can facilitate the spread of invasive plant 
species by accelerating disturbance rates and con-
tributing to the loss of native species while increas-
ing the range and competitiveness of invasive plants 
(Schnitzler et al. 2007).

The complex interactions of climate change 
and invasive species make effects at the community 
level especially difficult to predict (Williams et al. 
2000, Moore 2005). After climate change, dominant 
endemic species may no longer be adapted to the 
changed environmental conditions of their habitat, 
affording the opportunity for introduced species to 
invade, and to alter successional patterns, ecosystem 
function and resource distribution (McNeely 1999, 
Tilman and Lehman 2001).
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2.9 Insights from Experiments

2.9.1 Introduction

Controlled experiments are among our most impor-
tant tools for measuring the separate and interactive 
effects on forests of climate change and air pollution. 
They provide exposure-response science support for 
interpretation of field observations and monitoring 
data. They also provide critical inputs for modelling 
impact mechanisms and future impacts of climate 
change.

2.9.2 Elevated CO2 Experiments

Atmospheric CO
2
 has risen some 33% since the pre-

industrial period but remains well below the point of 
CO

2
 saturation for photosynthesis in most tree spe-

cies. There is considerable interest in the hypothesis 
that past and ongoing increases in atmospheric CO

2
 

are causing increases in forest productivity.
Across a host of experiments, increases in pho-

tosynthetic levels have averaged 40% in response to 
simulated increases in CO

2
 from pre-industrial levels 

to 500 ppm, a concentration predicted for the middle 
of this century (Ellsworth et al. 2004, Ainsworth 
and Long 2005). For young temperate-zone forest 
stands exposed for nearly a decade to elevated CO

2
 

using Free-Air CO
2
 Enrichment (FACE) technology, 

the increase in forest productivity has averaged 23% 
across a range of tree species tested on two continents 
(Norby et al. 2005). Relative growth enhancement 
varied by species (Karnosky et al. 2005), genotype 
(McDonald et al. 2002) and from year-to-year de-
pending on climatic conditions (Kubiske et al. 2006, 
Moore et al. 2006). This increase in productivity is 
driven largely by the enhancement of photosynthesis, 
but it is also affected in some, but not all, species by 
increased leaf area (Karnosky et al. 2005), extended 
growing season (Taylor et al. 2008) and increased 
root growth, allowing for increased soil volume ex-
ploitation for available nutrients and moisture (Norby 
et al. 2004, King et al. 2005).

Increased water use efficiency can also contribute 
to productivity enhancement, particularly under wa-
ter-limiting situations because elevated CO

2
 causes 

a reduction in stomatal conductance (Medlyn et al. 
2001). However, elevated CO

2
 concentrations can 

also alter physical/chemical leaf defences against 
insects, leading to changes in leaf quality that result 
in changes in herbivory (Percy et al. 2002, Karnosky 
et al. 2003, Kopper and Lindroth 2003). Effects of 
elevated CO

2
 or ozone (O

3
) on insect performance as 

mediated through natural enemy populations may be 
more difficult to predict (Awmack et al. 2004).

Only a few studies of CO
2
 enrichment effects 

have been completed on older trees. These trees 
have tended to be less responsive to elevated CO

2
 

than younger trees (Körner et al. 2005, Asshoff et 
al. 2006). However, because of the size of the trees 
involved, such studies have not been as statistically 
robust as have the younger tree studies.

2.9.3 Warming Experiments

Historical records show an increase in mean global 
temperature of 0.6ºC over the last 100 years (IPCC 
2007b). Essentially all chemical and biological pro-

Photo 2.3 Invasive species are among the most 
globally significant factors affecting forest ecosys-
tems and biodiversity. Kudzu (shown here) invaded 
many forests in the southern United States after 
it was imported from Japan to reduce soil ero-
sion. Controlling invasive species and other stress 
factors can reduce forest vulnerability to some 
aspects of climate change.
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cesses are affected by changes in temperature (Saxe et 
al. 2001), so it is axiomatic that warming has already 
had many effects on forest ecosystems. However, 
effects of warming in forests are confounded with 
effects of co-occurring increases in CO

2
, land-use 

change and other factors such as drought and fires. 
Controlled experiments are useful in understanding 
effects of warming alone and in combination with 
other factors.

Scientists have conducted a vast array of diverse 
warming studies of trees and forests using growth 
chambers, mesocosms, open-top and closed-top field 
chambers, common garden studies across tempera-
ture gradients, and heated open-air plots. In addition, 
a number of soil-warming studies have been con-
ducted using various methods: e.g. removing winter 
snow to create differences in spring soil warm up; 
placing passive covers over lower-statured vegetation 
to reduce night-time heat loss to the atmosphere; 
and heating the soil with electric cables buried in 
upper soil layers. Most warming experiments are 
restricted in their temporal scope – e.g. daytime only, 
night-time-only or seasonal – for budgetary and other 
practical reasons.

Interpretation of the warming experiment lit-
erature is constrained by the fact that investigators 
have used so many different experimental designs 
and methods. Nevertheless, some consensus from 
warming experiments is emerging as to how warming 
will impact forest ecosystems. Warmer temperatures 
at northern latitudes will likely enhance photosynthe-
sis and growth through increases in maximal sum-
mer photosynthesis, and by increases in the seasonal 
duration of photosynthetic activity (Saxe et al. 2001, 
Norby et al. 2003, Danby and Hik 2007, Peñuelas 
et al. 2007, Slaney et al. 2007, Bronson et al. 2008, 
Post et al. 2008). Tropical forests remain largely un-
studied from the standpoint of warming experiments 
(Fearnside 2004, Feeley et al. 2007). This remains 
an important research need as the tropical forests 
play a key role globally as carbon sinks, and recent 
studies have suggested this sink may be adversely 
impacted by climate change (Fearnside 2004, Feeley 
et al. 2007).

A second topic of major concern regarding global 
temperature increases is the potential for major shifts 
of tree species toward the poles, and upwards on 
mountain slopes (see sub-chapter 2.6). Some models 
indicate forest vulnerability to regional-scale die-
back (Houghton 1996) and major changes in species 
ranges (Iverson and Prasad 2001, Parmesan and Yohe 
2003). Other studies have raised questions about the 
validity of these models (Loehle 1996, Loehle and 
LeBlanc 1996). Warming experiments and associated 
modelling efforts provide useful insight into this sci-
entific discussion as they have clearly demonstrated 
that there is large plasticity in response for many 
of the tree species examined (Rehfeldt 1988, 1989, 

King et al. 1999, Gunter et al. 2000, Rehfeldt et al. 
2004, Reich and Oleksyn 2008). This growing body 
of research suggests that vegetation models designed 
to predict species’ responses to global warming need 
improvement with respect to their capacity to evalu-
ate the extent and structure of genetic variation.

Less scientific consensus has developed around 
forest vulnerability to impacts of warming on soil 
organic matter decomposition and on soil carbon 
accumulation and release (Davidson and Jansens 
2006, Bronson et al. 2008). This is an important re-
search question because models of temperature ef-
fects on soil organic matter decomposition derived 
from laboratory studies predict large decreases in 
global soil organic matter as a result of warming 
alone (e.g. 8–12 Pg C °C–1) (Saxe et al. 2001). While 
some studies have found that warming significantly 
increases CO

2
 efflux (Rustad and Fernandez 1998) 

from soils, others have shown substantially less CO
2
 

efflux than has been predicted by models (Niinisto 
et al. 2004, Bronson et al. 2008). Soil organic matter 
decomposition and CO

2
 efflux from soils will likely 

be altered under global warming but the amounts will 
probably not be as great as lab-based models predict 
(Davidson and Janssens 2006).

2.9.4 Altered Precipitation 
Experiments

A key global change driver closely associated with 
warming is drought. Water availability affects almost 
all processes underlying forest tree growth and repro-
duction. Water stress due to drought is a key factor 
affecting limits of distribution of tree species. Even 
one or two seasonal droughts can trigger a cascade of 
events leading to dieback, decline or increased risk of 
fire (Jones et al. 1993, Hanson and Weltzin 2000, As-
ner et al. 2004, Nepstad et al. 2004, Breshears et al. 
2005) or major pest outbreaks (Rouault et al. 2006, 
Dobbertin et al. 2007, Kurz et al. 2008a). Global 
change models suggest that there will be changes in 
drought occurrence and impacts in many areas of the 
world over the next century. Thus, water manipula-
tion experiments can play a key role in evaluating 
model assumptions and results.

Throughfall exclusion experiments that alter rain-
fall amounts reaching the soil surface by 30–50% 
have been conducted in temperate oak forest in Ten-
nessee (Wullschleger et al. 1998) and in the Brazil-
ian tropics (Nepstad et al. 2002, Fisher et al. 2006). 
These studies have documented decreases in whole-
plant water flux in response to simulated reductions 
in rainfall (Wullschleger et al. 1998, Romero-Saltos 
et al. 2005, Fisher et al. 2007, 2008). Few other re-
sponses to simulated changes in rainfall were de-
tected in the temperate oak forest, despite intensive 
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monitoring of growth, leaf area development, leaf 
duration and leaf senescence (Hanson et al. 2001, 
Wullschleger and Hanson 2006). In contrast, similar 
precipitation manipulations in the Brazilian tropics 
affected reproductive phenology, litterfall, wood pro-
duction, below-ground carbon cycling and large-tree 
mortality (Brando et al. 2006, Nepstad et al. 2007, 
Brando et al. 2008).

There is no clear consensus yet as to long-term 
effects of droughts on soil CO

2
 flux (Sotta et al. 

2007). Interaction of deforestation and increased 
frequency of drought due to land-use change and 
climate change are predicted to also alter soil carbon 
efflux in the tropics (Nepstad et al. 2008). However, 
results from two major precipitation exclusion stud-
ies have shown mixed results in terms of soil CO

2
 

efflux. While a small increase (9%) in soil CO
2
 ef-

flux was measured over three years at the study in 
Santarén, Brazil (Fisher et al. 2007), there was a 
drought-induced decrease in soil CO

2
 efflux in the 

Caxiuanã, Brazil study (Sotta et al. 2007). The au-
thors speculated that different soil types and avail-
able soil moisture were likely to have caused these 
differences (Sotta et al. 2007).

As with responses reported for other global 
change drivers, there is a large genetic variation in 
response to drought (Ogaya and Peñuelas 2007, Slot 
and Poorter 2007, Meier and Leuschner 2008). It is 
clear that mechanisms of genetic control of drought 
tolerance are only beginning to be elucidated (Street 
et al. 2006).

2.9.5 Flux Tower Experiments

Ecosystem-level CO
2
 exchanges between terrestrial 

ecosystems and the atmosphere are being monitored 
using eddy-covariance techniques from a network 
of over 500 tower sites worldwide. Monitoring data 
from these towers has improved understanding of 
the effects of extreme events that may occur with 
increasing frequency under climate change. For ex-
ample, the gross primary productivity over Europe 
was reduced some 30% during the heat wave and 
drought of 2003 (Ciais et al. 2005, Peñuelas et al. 
2007). Similar reductions in net ecosystem carbon 
exchange were detected for Portuguese forests dur-
ing the severe drought experienced in 2004–2005 
(Pereira et al. 2007).

Boreal forest ecosystems, which are large reser-
voirs of soil-held carbon, are particularly vulnerable 
to carbon release under global warming (Goulden 
et al. 1998). Recently, flux measurements have 
been useful in showing that the carbon balance of 
these northern ecosystems has been shifted to one 
of higher respiration, particularly in the autumn as 
these regions have warmed over the past two decades. 

Results indicate vulnerability to reductions in the 
capacity of northern ecosystems to sequester carbon 
as global warming continues (Piao et al. 2008).

2.9.6 Phenological Gardens

Phenological shifts (particularly bud break and flow-
ering dates) have emerged as a prime indicator of 
forest responses to global warming in temperate and 
boreal forests (Menzel and Fabian 1999, Walther et 
al. 2002, Sherry et al. 2007). Important data sources 
include phenological gardens where investigators 
have monitored dates of spring bud break, flowering 
and autumnal foliar coloration (Menzel and Fabian 
1999). Repetitive examination of keystone species in 
these gardens has documented advancements in dates 
of spring bud break ranging from 2.3 to 5.1 days per 
decade (Menzel and Fabian 1999, Chmielewski and 
Rötzer 2001, Wolfe et al. 2005, Menzel et al. 2006, 
Pudas et al. 2008). However, there is some evidence 
that part of this phenological change may be due to 
increasing atmospheric CO

2
 concentrations as well 

as warming (Taylor et al. 2008).
Reported changes in phenology are generally 

greatest at higher latitudes and have been correlated 
with rising temperatures over the past several de-
cades (Parmesan 2007). Interestingly, results from 
phenological gardens have correlated very well with 
satellite imagery used to follow seasonal green-up 
and with measurements of the variations in the timing 
and amplitude of the seasonal cycle of atmospheric 
CO

2
 (Linderholm 2006), showing the value of phe-

nological gardens in ‘ground truthing’ a key climate-
change phenomenon. In the tropics, tree phenology 
is driven largely by seasonal water availability, so 
leaf out and leaf longevity are not useful indicators 
of climate warming (Borchert et al. 2005).

2.9.7 Research Needs

Experiments have provided important insights into 
the potential effects on forests of climate change 
variables and interacting factors. For example:
◆ Recent CO

2
 increases and climate warming are 

consistent with (and may be contributing to) ob-
served increases in forest productivity in some re-
gions (Norby et al. 2005). Any increase in carbon 
sequestration due to elevated CO

2
 occurs largely 

from enhanced tree growth, as increased soil res-
piration under elevated CO

2
 results in little added 

soil carbon build-up (King et al. 2004).
◆ Effects of CO

2
 on tree growth can be diminished 

by co-occurring effects of factors such as nutri-
ent limitations (Oren et al. 2001), pest activity 
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or elevated tropospheric ozone (Karnosky et al. 
2005). However, elevated CO

2
 can mitigate im-

pacts of drought on forests by increasing water 
use efficiency (Medlyn et al. 2001).

◆ Community structure can be altered by elevated 
CO

2
 as different species and communities are fa-

voured under elevated CO
2
 compared to control 

conditions, both above ground (McDonald et al. 
2002, Kubiske et al. 2007, Mohan et al. 2007) 
and below ground (Phillips et al. 2002, Zak et al. 
2007).

It should be noted, however, that the vast majority 
of global change experiments have been conducted 
as single-factor studies with young temperate-zone 
trees. There is a need for more multiple-factor stud-
ies of the key climate-change drivers with tree spe-
cies from boreal, subtropical and tropical domains 
(Karnosky et al. 2003, Hyvonen et al. 2006). These 
studies must be well-replicated, robustly designed, 
and run for the long term to allow for exposure un-
der a range of local climatic conditions for stand 
dynamics and pest population cycles to operate so 
that the important role of global change drivers in 
predisposing trees to other biotic and abiotic stressors 
is better understood (Percy et al. 2002).

Very little experimental work with elevated CO
2
, 

warming or drought has been done on mature trees, 
so this remains a large knowledge gap that hinders 
modelling of future impacts of climate change on for-
est productivity. Similarly, almost no experimental 
work has been done with warming or elevated CO

2
 

in tropical forests. Model predictions are that greater 
CO

2
 enhancement will occur in tropical trees than 

has occurred in temperate forest trees (Hickler et 
al. 2008), but that warming effects on respiration 
will largely offset these positive effects (Lloyd and 
Farquhar 2008).

The interactions of climate-change drivers with 
nutrient dynamics and important air pollutants have 
not yet been adequately studied. The current theory of 
‘progressive nutrient limitation’ suggests that long-
term responses to elevated CO

2
 will lower nitrogen 

availability (Oren et al. 2001) and thereby limit sub-
sequent growth responses. This highly contentious 
theory has not been validated, particularly on rela-
tively fertile sites (Finzi et al. 2007). Similarly, the 
role of tropospheric O

3
 in limiting the sink strength 

of forest trees remains poorly understood (Reilly et 
al. 2007, Sitch et al. 2007) and is tightly linked to 
climate change (Vautard and Hausglustaine 2007). 
Elevated concentrations of tropospheric O

3
 are pre-

dicted to affect large areas of the world’s forests in 
this century (Felzer et al. 2007).

2.10 Conclusions

The complexity of natural and human systems is 
a formidable barrier to quantification of climate 
change impacts in the forest sector. For example, 
forests are strongly influenced by tree growth rates 
(via slow processes) and disturbance regimes (via 
rapid processes). Slow processes and rapid processes 
can be influenced simultaneously by a complex ar-
ray of factors that includes several dimensions of 
climate (drought, temperature, wind, etc.). Changes 
in climate can influence forests simultaneously in op-
posing directions. For example, warming of mid- to 
high-latitude forests tends to increase productivity in 
the absence of disturbance, but also tends to increase 
forest disturbance. It is also necessary to consider cu-
mulative effects and interactions of climate changes, 
forest management, air quality, invasive species and 
other factors.

Complexity often stymies quantification and pre-
dictability of climate change impacts, but also pro-
vides many different pathways to adaptation when 
local or scientific knowledge is sufficient to define 
the dimensions of climate change and their interac-
tions with natural and human systems. It is known 
already that warming can influence the geographic 
range and behaviours of herbivore species, thereby 
altering plant community structures and disturbance 
regimes in forest ecosystems. Such knowledge of 
herbivore biology, ecology and management can 
inform the development of adaptive responses to 
climate change. For example, theory and experi-
ence support the general concept that thinning of 
overstocked stands can reduce climate impacts on 
forest productivity mediated by insects that feed on 
trees.

The resilience of forest ecosystems supports hu-
man adaptation but can be overcome by severe distur-
bance and sufficiently large changes in climate. Trees 
can die rapidly and en masse, but forest regeneration 
and regrowth are relatively slow processes. There-
fore, small changes in disturbance regimes can have 
large, lasting effects on forest ecosystems. Some-
times, disturbance-related changes in forests are 
made more difficult to reverse by associated altera-
tions in, for example, soils, seed sources, pollinators, 
seed dispersers, herbivores and local climates. Be-
cause of the relatively long time required for natural 
forest regeneration following disturbance, there can 
be advantages to proactive changes in management 
compared to reactive changes.

Proactive adaptation measures based on knowl-
edge of climate impact mechanisms have potential 
to prevent reductions in ecosystem goods and ser-
vices in forests managed actively for timber and non-
timber forest products. Effective adaptation requires 
explicit recognition that climate is one of many driv-
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ers of ecosystem change (Vitousek 1997, Chapin et 
al. 2000, Hanson et al. 2001, Chambers et al. 2007, 
Chapin et al. 2008). Non-climatic factors can influ-
ence forest disturbance regimes via interactions with 
climatic effects. Such interaction can take the form 
of feedback systems that tend either to stabilize or 
destabilize forest ecosystems (Ayres and Lombard-
ero 2000, Bonan 2008). Recognizing and managing 
these feedback systems offers a general pathway to 
adaptation of human interactions with forests subject 
to climate change.
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